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Abstract

This paper deals with the effectiveness of a floating slab track for the control of ground-borne vibrations generated by

rail transportation systems. The effectiveness is studied by means of a three-dimensional numerical model for the

prediction of railway induced vibrations that fully accounts for the interaction between the train, the track and the soil.

The incorporation of a resilient mat in a slab track system results in a resonance phenomenon that is determined by the

mass of the slab track and the resilience of the mat. At frequencies higher than the slab resonance frequency, the concrete

slab uncouples from the underlying soil and the transfer of vibrations is reduced. The effective reduction in the free field,

however, is highly dependent on the dynamic characteristics of the slab and the soil. In the case where the phase velocity of

the bending waves in the slab is higher than the phase velocity of the Rayleigh waves in the soil, the radiation of waves into

the free field is modified. As a result, the reduction of the free field vibrations depends on the angle between the track

and the line between the source on the track and the receiver in the free field. In the case where the phase velocity of the

bending waves in the slab is much lower than the phase velocity of the Rayleigh waves, a more uniform reduction of the

free field response is obtained.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Ground-borne vibrations due to railway traffic have become important environmental issues, which are
particularly critical when new rail infrastructure is introduced in an existing urban environment [1].

Ground-borne vibrations can be controlled at different levels along the transmission path between the
source and the receiver. At the source side, the dynamic vehicle characteristics can be modified, the wheel/rail
unevenness can be reduced and resilient elements such as ballast mats or slab mats can be incorporated at
different levels in the track structure [2–4] (Fig. 1). This paper concentrates on the effectiveness of floating slab
tracks for the control of ground-borne vibrations.

In the case of a floating slab track, the slab rests on a resilient mat. The presence of the resilient mat results
in a slab resonance frequency, which should be as low as possible for an effective reduction of the free field
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Transversal section of a slab track.
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vibrations. The slab mat resilience is limited, however, by the maximum allowable static rail deflection. Nelson
[3] reports a resonance frequency of 16Hz for the resonance frequency of the coupled vehicle–track system in
the case of the continuous floating slab in use at the Washington Metropolitan Area Transit System and
resonance frequencies between 8 and 16Hz for discontinuous slabs in several other rail transportation systems
in the USA and Canada. Cui and Chew [5] discuss the design of the floating slab track of the Singapore Mass
Rapid Transit system with a resonance frequency of 10Hz. Schillemans [1] presents a study of the noise and
vibration impact of the North–South high speed train connection through the city of Antwerp where a floating
slab at 11Hz is proposed for a tunnel in close proximity of building foundations.

The working principle of the floating slab track [2] or under ballast mats [6] is usually demonstrated by
considering the transmissibility of a single degree of freedom system. The design is based on more elaborate
models, that typically involve a continuous track model, where the rails and the concrete slab are modelled as
beams with an infinite length and the rail pads and slab mats are represented by locally reacting vertical
springs. Jones [7,8] uses such a two-dimensional track model, coupled to a three-dimensional layered half-
space model for the soil, to study the effectiveness of anti-vibration systems. At the track–soil interface, a
uniform distribution of the soil tractions is assumed. Nelson [3] and Nelson et al. [9] study the performance of
ballast mats and floating slabs by means of a similar two-dimensional track model, which is coupled to a soil
model that is based on a lumped parameter model of a foundation on a halfspace.

A large number of authors have recently presented similar track models. Sheng et al. [10,11] couple an
infinite layered beam model for the track to a layered half-space model of the soil, using the Haskell–Thomson
transfer matrices for the soil. Sheng et al. [12,13] also coupled a train model to the track and indicate that when
the train speed is relatively low compared to the wave velocities in the soil, the dynamic component of the axle
loads determines the vibration levels in the free field. Kaynia et al. [14] and Madshus and Kaynia [15] model
the track by means of beam elements and calculate the impedance of the coupled track–soil system by means
of the disc Green’s functions for a horizontally layered half-space. Auersch [16] has coupled a finite element
model for a finite track part to a boundary element model for the soil. This model has been used to calculate
the track compliance that is subsequently used in the solution of the vehicle–track interaction problem.
Metrikine et al. [17] study the stability of a moving train bogie by means of a two degree of freedom model for
the bogie, which is coupled to a beam of infinite length for the track and a homogeneous half-space model for
the soil, following an approach proposed by Metrikine and Popp [18].

Other models for dynamic track–soil interaction have been proposed by Andersen and Nielsen [19] who
apply a boundary element method for the steady-state response of an elastic medium in a moving frame of
reference. Ekevid and Wiberg [20] combine the finite element method and the scaled boundary element method
for the quasi-static response of the coupled track–soil system.

Within the frame of the present paper, a three-dimensional numerical model [21] is applied to study the
effectiveness of a floating slab for the control of ground-borne vibrations induced by railway traffic. The focus
is on the influence of the dynamic track–soil interaction on the wave radiation by a dynamic point load on the
track. The numerical model accounts for the dynamic interaction between the train, the track and the soil, as
required for the calculation of the dynamic axle loads, which are the major source of ground-borne vibrations
when the train speed is low compared to the wave velocities in the soil. The track is modelled by means of
beams with an infinite length, while the soil is modelled as a horizontally layered elastic half-space. The soil
impedance is calculated by means of the boundary element method, based on the Green’s functions of a
horizontally layered half-space. The model has been validated by means of several experiments that have been
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performed at the occasion of the homologation tests of the new HST track on the line L2 between Brussels and
Köln [21].

The outline of the paper is as follows. First, the general equations that govern the track–soil interaction are
formulated for the case of a floating slab track. The effectiveness of the floating slab is studied by comparing
with the performance of an ordinary (unisolated) slab track for both the case of a soft and a stiff soil.
The track impulse response is calculated in the frequency–wavenumber domain and interpreted by means of
the dispersion curves of the bending waves in the slab and the Rayleigh waves in the soil. The response at the
track–soil interface is used to compute the insertion loss in the frequency–wavenumber domain. These results
show at which wavenumbers and frequencies the response is reduced by the presence of the slab mat. Next, the
transfer functions between the track and the free field are studied in the frequency–wavenumber domain and
in the frequency domain. Finally, the response in the free field is used to compute the insertion loss.

2. The equations of motion of the track–soil system

In this subsection, the equations of motion of the coupled track–soil system are solved for a vertical impulse
load at a fixed position fxS; 0; zSg

T on the track. The track is assumed to be located at the surface of a
horizontally layered half-space, with a geometry that is invariant in the longitudinal direction ey (Fig. 2). In
the following, the more general case of the floating slab track is considered, as the expressions for the
unisolated slab track are easily derived from the latter.

Fig. 3 shows a model for a floating slab track, where resilient elements are incorporated under the rails and
under the concrete slab. The rails are modelled as Euler–Bernoulli beams with a bending stiffness ErIr and a
mass rrAr per unit length. The rail displacements are denoted as ur1ðy; tÞ and ur2ðy; tÞ. The positions of the rail
are determined by l1 and l2.

The rail pads are modelled as continuous spring–damper connections. The rail pad stiffness krp and
damping coefficient crp of a single rail pad are used to calculate an equivalent stiffness krp ¼ krp=d and
damping coefficient crp ¼ crp=d in the continuous model, where d is the distance between the pads.

The concrete slab is assumed to be rigid in the plane of its cross section and modelled as a beam,
accounting for both bending and torsional deformations. The width of the slab is denoted as 2B and the
y

z
x

2B

Fig. 2. Problem geometry.



ARTICLE IN PRESS

rail

rail pad

slab

ur2

l2

l1

ur1

krp  crp
usl

�sl

slab mat

interface

B

us

�s

 ksm  csm

Fig. 3. Cross section of a numerical model for a floating slab.
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height of the slab as hsl. These geometric properties and the density rsl, the Young’s modulus Esl and the
shear modulus Gsl are used to calculate the mass per unit length rslAsl ¼ rsl2Bhsl, the bending stiffness
EslI sl ¼ Esl2Bh3

sl=12, the mass moment of inertia rslI sl;t ¼ rsl2B3h=3 and the torsional stiffness GslCsl ¼

Gsl2Bh3=3 of the slab.
The slab mat is assumed to act as a set of distributed, independent linear springs and dampers, with a

vertical stiffness Ksm ½N=m3�. The total vertical stiffness over the track width 2B is denoted as ksm ½N=m2� and
equal to 2BKsm. When viscous damping in the slab mat is accounted for, the dynamic impedance of the slab
mat in the frequency domain equals ksm þ iocsm.

The track–soil interface is assumed to be rigid in the plane of the track cross section. The vertical
displacements uszðx; y; tÞ at the track–soil interface S are therefore determined by the the vertical displacement
usðy; tÞ at the centre of the track–soil interface and the rotation bsðy; tÞ about this centre:

uszðx; y; tÞ ¼ usðy; tÞ þ bsðy; tÞx ¼ /tðxÞaðy; tÞ on S, (1)

where /tðxÞ is the vector f1; xg that collects the displacement modes of the cross section, while the vector aðy; tÞ
collects the displacement usðy; tÞ and the rotation bsðy; tÞ, which can be interpreted as generalised degrees of
freedom.

The invariance of the geometry with respect to the longitudinal coordinate y allows a Fourier
transformation of the coordinate y to the wavenumber ky. This results in a solution procedure in the
frequency–wavenumber domain, where the equations of motion of the coupled track–soil system can be
written in the following general form:

½ ~Ktr þ ~Ks�~utr ¼ ~ftr, (2)

~Ktr and ~Ks represent the track and the soil impedance matrices, respectively, while ~utr is the track
displacement vector and ~ftr is the force vector applied to the track. A tilde above a variable denotes its
representation in the frequency–wavenumber domain, so that the arguments ky and o are omitted. The
solution procedure has been originally proposed by Aubry et al. [22] and Clouteau et al. [23] to study the
interaction of an infinite beam with a horizontally layered elastic half-space in the frequency–wavenumber
domain.

The track displacement vector ~utr collects the track displacements and the generalized degrees of freedom ~a
of the track–soil interface S. In the present case of a floating slab track, the vector ~utr equals
f ~ur1; ~ur2; ~usl; ~bsl; ~us; ~bsg

T. The track force vector ~ftr contains the forces applied at both rails and is equal to
f ~f r1; ~f r2; 0; 0; 0; 0g

T.
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The track impedance matrix ~Ktr in the equations of motion (2) of the coupled track–soil system is

~Ktr ¼

~Kr þ ~Krp 0 � ~Krp � ~Krpl1 0 0

0 ~Kr þ ~Krp � ~Krp � ~Krpl2 0 0

� ~Krp � ~Krp
~K sl;b þ 2 ~Krp þ ~Ksm

~Krpðl1 þ l2Þ � ~Ksm 0

� ~Krpl1 � ~Krpl2 ~Krpðl1 þ l2Þ ~K sl;t þ ~Krpðl
2
1 þ l22Þ þ

~Ksm
B2

3
0 � ~Ksm

B2

3

0 0 � ~Ksm 0 ~Ksm 0

0 0 0 � ~Ksm
B2

3
0 ~Ksm

B2

3

2
66666666664

3
77777777775
, (3)

where ~Kr denotes the rail impedance ErIrk
4
y � rrAro2 in the frequency–wavenumber domain and ~Krp is the

dynamic stiffness krp þ iocrp of the rail pads. ~Ksl;b ¼ EslI slk
4
y � rslAslo2 and ~K sl;t ¼ GslCslk

2
y � rslI sl;to

2 are the
slab bending and torsional impedance, respectively. The dynamic stiffness ~Ksm of the slab mat in the vertical
direction is equal to ksm þ iocsm. The rotational impedance equals ~Ksmb2=3.

In the case of the unisolated slab track, no distinction is made between the degrees of freedom ~usl and ~bsl
that describe the vertical slab response and the degrees of freedom ~us and ~bs that describe the vertical response
at the interface between the track and the soil. The track displacement vector ~utr in this case is f ~ur1; ~ur2; ~usl; ~bslg

T

and the track impedance matrix ~Ktr is obtained by omitting the rows and columns in Eq. (3) that correspond
to the degrees of freedom ~us and ~bs and omitting the contribution related to ~Ksm in the remaining elements.

The weak formulation of the vertical equilibrium at the track–soil interface S allows the calculation of the
soil impedance matrix ~Ks in Eq. (2):

~Ksijðky;oÞ ¼
Z
S
fti
~tszðuscðftjÞÞdG, (4)

where uscðftjÞ is the wavefield in the soil due to an imposed displacement ftj at the track–soil interface S in the
frequency–wavenumber domain. ~tszðuscðftjÞÞ is the vertical component of the soil tractions ~ts ¼ ~rsn on a
boundary with a unit outward normal n due to this scattered wavefield uscðftjÞ. In the present case, the soil
impedance matrix is equal to

~Ks ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ~Ks11 0

0 0 0 0 0 ~Ks22

2
6666666664

3
7777777775
. (5)

A boundary element method is used to calculate the soil tractions ~tszðuscðftjÞÞ at the track–soil interface,
assuming that the track is located at the soil’s surface [22,24]. The boundary element formulation is based on
the boundary integral equations in the frequency–wavenumber domain, using the Green’s functions of a
horizontally layered soil [25–27]. Each soil layer is characterized by its thickness d, the elastic constants E and
n or the longitudinal and transversal wave velocities Cp and Cs, the material density r and a material damping
ratio bp and bs in Eq. (2) that governs the volumetric and deviatoric deformation, respectively.

The solution of the track–soil interaction provides the soil displacements f ~us; ~bsg
T at the track–soil interface

S, which allow the computation of the soil tractions ~tszðx; ky; z ¼ 0;oÞ at this interface:

~tszðx; ky; z ¼ 0;oÞ ¼ ~tszðuscð/tÞÞ~a, (6)

where ~tszðuscð/tÞÞ collects the vertical component of the soil tractions due to the scattered wavefields in
the soil.

The dynamic reciprocity theorem is used for the calculation of the track–soil transfer function ~hziðx; ky; z;oÞ:

~hziðx; ky; z;oÞ ¼
Z
S
~uG

ziðx� x0; ky; z;oÞ~tszðx
0; ky; z

0 ¼ 0;oÞdG (7)
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where ~uG
ziðx; ky; z;oÞ is the representation in the frequency–wavenumber domain of the Green’s function

uG
ziðx; y; z; tÞ, that represents the displacement in the direction ei at a time t in a point fx; y; zgT due to an

impulse load dðtÞ in the vertical direction ez at the origin of the frame of reference.

3. The track response

3.1. Dynamic properties of the track and the soil

In the following, the effectiveness of the floating slab track will be investigated for two different cases, where
a track is coupled to a homogeneous elastic half-space with different soil properties.

The track is composed of two UIC60 rails with a bending stiffness ErIr ¼ 6:45� 106 Nm2 and a mass per
unit length rrAr ¼ 60:3 kg=m for each rail. The rail pads have a stiffness krp ¼ 213:2� 106 N=m and a
damping crp ¼ 14:8� 103 Ns=m. A distance d ¼ 0:6m between the rail pads is used to calculate the equivalent
stiffness krp ¼ krp=d and damping coefficient crp ¼ crp=d in the continuous model. The concrete slab has a
density rsl ¼ 2500 kg=m3, a Young’s modulus Esl ¼ 30000N=mm2 and a shear modulus Gsl ¼ 11000N=mm2.
The width of the slab 2B equals 2.5m and the height hsl ¼ 0:55m. In the case of the floating slab, a slab mat
with a stiffness Ksm ¼ 15� 106 N=m3 and a damping coefficient Csm ¼ 30� 103 Ns=m3 is considered.

The track is assumed to be located at the surface of a homogeneous half-space that represents the soil. In a
first case, a homogeneous half-space with a shear wave velocity Cs ¼ 150m=s and a dilatational wave velocity
Cp ¼ 300m=s is considered. The soil hysteretic material damping ratio b equals 0.025 in both shear and
volumetric deformation. The phase velocity Cr of the Rayleigh waves is equal to 140m=s in this case and is
smaller than the phase velocity of the bending waves in the track in the frequency range of interest. This is
therefore referred to as the case of the soft soil. In the second case, the Young’s modulus of the soil is increased
by a factor of 16, which results in a shear wave velocity Cs ¼ 600m=s and a dilatational wave velocity
Cp ¼ 1200m=s. This is the case of the stiff soil, as the Rayleigh phase velocity is now higher than the phase
velocity of the bending waves.

3.2. The track impulse response in the frequency–wavenumber domain

The track impulse response in the frequency–wavenumber domain is found from the solution of the
track–soil interaction equation (2). The impulse is applied at the track centre, so that the same load ~f r1 ¼
~f r2 ¼ 0:5 is applied at both rails. Torsional waves in the slab are not excited.
Fig. 4a shows the rail impulse response as a function of the frequency o=2p and the dimensionless

wavenumber ky in the case of the unisolated track on the soft soil. The shear wave velocity Cs of the
homogeneous half-space has been used to define the dimensionless wavenumber ky as kyCs=o or,
alternatively, as the ratio of Cs and the phase velocity Cy of the waves. Superimposed on this figure are
the dispersion curve kr ¼ Cs=Cr of a Rayleigh wave in the y-direction and the dispersion curve kb ¼ Cs=Cb of
a bending wave in the slab with a phase velocity Cb:

Cb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EslI sl

rslAsl
o24

s
. (8)

The Rayleigh wave dispersion curve corresponds to a horizontal line at ky ¼ 1:073, due to the non-dispersive
character of the Rayleigh wave in a homogeneous halfspace.

A local maximum of the rail response (Fig. 4a) is found near the point where the dispersion curve of the
bending wave intersects the dispersion curve of the Rayleigh wave. The intersection occurs at a frequency f ts:

f ts ¼
1

2p
C2

r

ffiffiffiffiffiffiffiffiffiffiffi
rslAsl

EslI sl

s
(9)

which equals approximately 6Hz in the present case. Sheng et al. [28] have discussed the crucial role of this
frequency of intersection in the dynamic behaviour of the coupled track–soil system for the case of a moving
harmonic or quasi-static load.
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Fig. 4. Logarithm of the modulus of the rail displacement, multiplied by the circular frequency o, in the frequency–wavenumber domain

for (a) the unisolated track on soft soil, (b) the isolated track on soft soil, (c) the unisolated track on stiff soil, and (d) the isolated track on

stiff soil. Superimposed on these figures are the dispersion curve of a Rayleigh wave in the y-direction (solid line) and the dispersion curve

of the bending wave in the free slab (dashed line).
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At higher frequencies, maxima are found along the dispersion curve of the track bending waves. As kb is
smaller than kr in this frequency range, these maxima correspond to waves with a wavelength that is larger
than the Rayleigh wavelength in the soil.

Fig. 4b shows the response of the isolated track. If the soil flexibility is disregarded, and the track is
modelled as a beam on elastic foundation, a cut-on frequency of the bending waves occurs at the resonance
frequency of the rigid track on the resilient slab mat:

f co ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffi
ksm

rslAsl

s
, (10)

which equals 16.3Hz in the present case. At higher frequencies, the dispersion curve of the bending waves in
the beam on elastic foundation tends towards the dispersion curve of the bending waves in the free beam.
Fig. 4b shows a clear maximum for the rail response near this cut-on frequency and a zero dimensionless
wavenumber. The peak response occurs at a frequency that is slightly lower than the computed value of
16.3Hz due to the additional flexibility provided by the coupling of the track to the soil. The peak response is
much larger than the response near the intersection of the dispersion curve of the Rayleigh wave in the
y-direction and the track bending wave. At frequencies higher than the cut-on frequency, the maxima follow
the dispersion curve of the slab bending waves. Compared to the case of the unisolated track, the maxima are
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far more pronounced. This is due to the fact that, at frequencies higher than the cut-on frequency, the slab
decouples from the soil and moves freely upon excitation. In the unisolated case, however, the coupling of the
slab with the soil provides a strong damping mechanism by the radiation of waves and material damping in the
soil.

Fig. 4c and d show similar results for the track on the stiff soil. The dispersion curve of the bending waves in
the track is now found at dimensionless wavenumbers that are four times higher, as the shear wave velocity Cs

of the stiff half-space is used to calculate the dimensionless wavenumber kb ¼ Cs=Cb. According to Eq. (9), the
frequency f ts where the dispersion curve of the track bending wave and the Rayleigh wave intersect, and where
a maximum rail response is found for the unisolated track, is multiplied by a factor of 16 or equal to 92Hz
(Fig. 4c).

At frequencies that are lower than f ts, the maxima of the rail response do not occur near the dispersion
curve of the bending waves, but near the dispersion curve of the Rayleigh wave. In the case of the isolated
track (Fig. 4d), the maxima occur near the dispersion curve of the beam on elastic foundation. In the
frequency range between f co and f ts, these maxima correspond to waves with a wavelength that is smaller than
the Rayleigh wavelength in the soil.

Fig. 5 shows the impulse response at the interface between the track and the soil in the
frequency–wavenumber domain. Compared to the response of the rail (Fig. 4), the response is more
concentrated at dimensionless wavenumbers that are smaller than kr and kb. Whereas the rail response in the
Fig. 5. Logarithm of the modulus of the displacement at the track-soil interface, multiplied by the circular frequency o, in the

frequency–wavenumber domain for (a) the unisolated track on soft soil, (b) the isolated track on soft soil, (c) the unisolated track on stiff

soil, and (d) the isolated track on stiff soil. Superimposed on these figures are the dispersion curve of a Rayleigh wave in the y-direction

(solid line) and the dispersion curve of the bending wave in the free slab (dashed line).
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Fig. 6. Insertion loss at the track–soil interface in the frequency–wavenumber domain for the floating slab on (a) the soft soil and (b) the

stiff soil. Superimposed on these figures are the dispersion curve of a Rayleigh wave in the y-direction (solid line) and the dispersion curve

of the bending wave in the free slab (dashed line).
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case of the isolated track (Figs. 4b and d) shows a single maximum near kr, a small local maximum is now also
observed near kr (Figs. 5b and d).

3.3. The insertion loss at the track– soil interface in the frequency–wavenumber domain

In order to verify for which frequencies and wavenumbers the response in the frequency–wavenumber
domain has decreased due to the insertion of a flexible slab mat, the results in Fig. 5 are used to calculate the
insertion loss IL from the ratio of the displacement at the track–soil interface of the unisolated and the isolated
track:

IL ¼ 20 log
~uuniso

s

~uiso
s

 !
(11)

Positive values of the insertion loss correspond to a smaller response of the isolated track.
Fig. 6 shows the insertion loss for both cases. At frequencies below the slab resonance frequency, the

insertion loss is negative and increases monotonically with the wavenumber ky, with a zero value at ky � kb.
At frequencies well above the resonance frequency, the insertion loss is positive for all wavenumbers, except in
a narrow region around kb, where it is negative. A small dip in the insertion loss is also observed near kr. At a
fixed frequency higher than the slab resonance frequency, the presence of the slab mat therefore amplifies the
response near kb, while it reduces the response at other wavenumbers. In the case of the soft soil (Fig. 6a), the
stronger contribution near kb is found in the wavenumber range between zero and kr, or at wavelengths that
are larger than the Rayleigh wavelength lr. In the case of the stiff soil (Fig. 6b), the stronger contribution near
kb is found at wavenumbers larger than kr, or at wavelengths smaller than lr, in a frequency range between 30
and 90Hz. In the following, it is shown how this affects the radiation of waves by a dynamic point load on the
track and the reduction of the vibrations in the free field.

3.4. The track receptance

The frequency content of the track impulse response is found as the inverse Fourier transformation of the
track displacement vector ~utr:

ûtrðy;oÞ ¼
1

2p

Z þ1
�1

~utrðky;oÞ expð�ikyyÞdky. (12)

The track receptance, or the response at the point y ¼ 0 where the impulse load is applied, is found from an
integration of the results shown in Figs. 4 and 5 along the ky axis. Whereas all previous results in the
frequency-wavenumber domain are shown upto a dimensionless wavenumber of 3, a much higher
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Fig. 7. The displacement of the rail (solid line), the slab (dashed line) and the track–soil interface (dotted line) for (a) the unisolated track

on soft soil, (b) the isolated track on soft soil, (c) the unisolated track on stiff soil, and (d) the isolated track on stiff soil.
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dimensionless wavenumber of k
max

y ¼ 1000 has been considered for the inverse Fourier transformation from
ky to y.

Fig. 7 shows the track receptance for the isolated and unisolated track. In the case of the unisolated track,
the slab displacement and the displacement at the track–soil interface coincide. At low frequencies, the
flexibility of the mat results in a higher rail and slab response. The response at the track–soil interface is
slightly smaller, as the softer support of the slab by the slab mat spreads the load over a larger area.

At the slab resonance frequency, the displacement of the rail, the slab and at the track–soil interface is much
higher in the case of the isolated track. At higher frequencies, the presence of the slab mat significantly reduces
the response at the track–soil interface. The response of the rail and the slab tend to a similar order of
magnitude as in the case of the unisolated track.

When the results of the track on the soft and the stiff soil are compared, the larger stiffness importantly
reduces the response at the track–soil interface. Furthermore, in the case of the unisolated track, the frequency
dependence of the track response has changed importantly, due to the shift of the frequency of intersection f ts

in the frequency–wavenumber domain (Fig. 5).

3.5. The insertion loss at the track–soil interface in the frequency domain

The results in Fig. 7 have been used to calculate the insertion loss IL at the track–soil interface, defined as
the ratio of the displacement at the point y ¼ 0 without and with the slab mat. The results for the soft and the
stiff soil show an IL with a similar tendency (see Fig. 8). At low frequencies, the IL is positive, as
the introduction of the resilient mat spreads the load over a larger area and decreases the response at the
point y ¼ 0 of the track–soil interface. This effect is more pronounced for the floating slab on the stiff soil.
At the slab resonance frequency, the response at the interface is much higher in the case of the floating
slab and the IL is negative. At higher frequencies, the interface response is effectively reduced, with a
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Fig. 8. Insertion loss at the track–soil interface for (a) the soft soil and (b) the stiff soil.
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better performance for the floating slab on the stiff soil. In this case, the response in the frequency–
wavenumber domain (Fig. 5d) is almost uniformly reduced in a dimensionless wavenumber range between 0
and kr, where the response is large. Similarly, the more uniform amplification of the response near the slab
resonance frequency in this wavenumber range explains why the dip of the IL is more pronounced in the case
of the stiff soil.

Although not shown on these figures, the better performance of the floating slab on the stiff soil occurs at
the expense of a larger amplification of the rail response upto frequencies that are

ffiffiffi
2
p

times higher than the
slab resonance frequency.

4. The free field impulse response

4.1. The track–soil transfer functions

The solution of the track–soil interaction equation (2) allows the calculation of the soil tractions at the
track–soil interface by means of Eq. (6). The transfer function between the track and the free field in the
frequency-wavenumber domain is computed by means of Eq. (7).

Fig. 9 shows the modulus of the free field velocity at x ¼ 8m in the frequency–wavenumber domain. In the
present load case, only a single displacement mode contributes to the tractions in Eq. (6) and the transfer
function is obtained as the product of the response at the track–soil interface (Fig. 5) and the integral of the
product of the Green’s function of the soil and the traction distribution. As only the first factor depends on the
track characteristics, the insertion loss at the track–soil interface in the frequency wavenumber domain (Fig. 6)
also determines the reduction of the track–soil transfer function in Fig. 9.

When the results in Figs. 5 and 9 are compared, it is observed that the contribution at wavenumbers higher
than kr is strongly reduced. Physically, this is explained by the fact that the waves at the interface with a
dimensionless wavenumber larger than kr, or with a wavelength smaller than lr, cannot radiate Rayleigh
waves that propagate into the free field. As a consequence, a large difference is observed between the results
for the floating slab on the soft and the stiff soil, respectively. In the case of the soft soil, the contribution of
waves with a wavenumber kb smaller than kr is amplified, and this amplification is clearly observed in the
results for the free field velocity. In the case of the stiff soil, however, the contribution of waves with a
wavenumber kb larger than kr is amplified in a frequency range between 30 and 90Hz, and this amplification is
effectively filtered by the soil.

4.2. The free field mobility

The frequency content of the displacements in the free field due to an impulse load on the track is calculated
in a similar way as the track receptance by means of an inverse Fourier transform of the track-free
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Fig. 9. Logarithm of the modulus of the vertical velocity at 8m from the track, in the frequency–wavenumber domain for (a) the

unisolated track on soft soil, (b) the isolated track on soft soil, (c) the unisolated track on stiff soil, and (d) the isolated track on stiff soil.

Superimposed on these figures are the dispersion curve of a Rayleigh wave in the y-direction (solid line) and the dispersion curve of the

bending wave in the free slab (dashed line).
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field transfer functions:

ĥziðx; y; z;oÞ ¼
1

2p

Z þ1
�1

~hziðx; ky; z;oÞ expð�ikyyÞdky (13)

The results in Fig. 9 have been used to calculate the free field velocity at x ¼ 8m and y equal to 0, 8 and
16m (Fig. 10). In the case of the unisolated track on soft soil (Fig. 10a), the free field mobility decreases with
increasing y and, therefore, with an increasing distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
from the point on the track where the

load is applied. The same holds for the isolated track (Fig. 10b), at frequencies below the slab resonance
frequency. At higher frequencies between 30 and 50Hz, however, a higher response is found at y ¼ 8m and
y ¼ 16m. The non-uniform reduction of the response at the track–soil interface (Fig. 6a) in the dimensionless
wavenumber range between 0 and kr changes the radiation of waves by a dynamic point load on the track.

In the case of the stiff soil (Figs. 10c and d), this effect does not occur at frequencies between 30 and 60Hz.
In this frequency range, the response at the interface (Fig. 6b) is uniformly reduced in the dimensionless
wavenumber range between 0 and kr.

In order to get a better view on the radiation of waves by a dynamic point load on the track, the free field
displacements are computed in a large number of points on the track and in the free field. The computation
has been performed by means of an efficient technique [29] that is based on the use of global shape functions
for the representation of the soil tractions at the track–soil interface.

Fig. 11 compares the displacements of the track and in the free field due to a harmonic unit load at a
frequency of 8Hz on the unisolated and the isolated track for the case of the soft and the stiff soil. For both
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Fig. 10. Free field mobility at x ¼ 8m and y ¼ 0m (solid line), y ¼ 8m (dashed line) and y ¼ 16m (dashed-dotted line) for (a) the

unisolated track on soft soil, (b) the isolated track on soft soil, (c) the unisolated track on stiff soil, and (d) the isolated track on stiff soil.

Fig. 11. The free field displacements due to a harmonic load at 8Hz on the track for (a) the unisolated track on soft soil, (b) the isolated

track on soft soil, (c) the unisolated track on stiff soil, and (d) the isolated track on stiff soil.
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cases, the results for the unisolated and the isolated track are shown on the same scale. When the response of
the unisolated and the isolated track are compared, it is observed that the displacements in the free field show
a similar pattern, with a slightly larger response on a line perpendicular to the track. This is due to the dynamic
amplification of the response near the slab resonance frequency. The displacements of the rail and the slab are
clearly larger in the case of the isolated track due to the additional flexibility of the resilient mat.
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Fig. 12. The free field displacements due to a harmonic load at 32Hz on the track for (a) the unisolated track on soft soil, (b) the isolated

track on soft soil, (c) the unisolated track on stiff soil, and (d) the isolated track on stiff soil.
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Fig. 13. Insertion loss for the floating slab at x ¼ 8m and y ¼ 0m (solid line), y ¼ 8m (dashed line) and y ¼ 16m (dashed-dotted line) for

the case of (a) the soft soil and (b) the stiff soil.
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Fig. 12 compares the track and the free field displacements due to a harmonic unit load at a frequency of
32Hz, which is well above the slab resonance frequency. In the case of the soft soil, the presence of the resilient
mat has completely changed the radiation of waves. Whereas in the unisolated case (Fig. 12a), large free field
displacements are found due to the radiation of waves perpendicular to the track, this is no longer the case for
the isolated track (Fig. 12b). The slab is clearly uncoupled from the soil and the bending waves in the
uncoupled slab result in larger displacements along the track and an effective reduction of waves radiated
perpendicular to the track. In the case of the isolated track on the stiff soil (Fig. 12d), the slab has uncoupled
from the soil as well and a large amplification of the track response is observed as compared to the unisolated
case (Fig. 12c). The free field displacements are radiated in a similar way as in the unisolated case, but with a
much smaller amplitude.

The results in Fig. 10 have been used to compute the insertion loss for the free field response in Fig. 13.
Whereas the results for the insertion loss at the track–soil interface (Fig. 8) show a positive value at low
frequencies, due to the load spreading of the resilient slab, this is no longer the case for the insertion loss in the
free field. A reduction of the free field vibrations is only achieved at frequencies sufficiently higher than
the slab resonance frequency, at the expense of an increased response at lower frequencies. In the case of the
soft soil (Fig. 13a), the insertion loss is high for the point at y ¼ 0, but is much lower at y ¼ 8m and y ¼ 16m.
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The effective reduction depends on the angle between the track and the line that connects the source on the
track and the receiver in the free field. For a moving harmonic load, the response during the approach and the
receding is less reduced than the peak response at the time where the source passes the receiver. In the case of
the stiff soil (Fig. 13b), a rather uniform attenuation is obtained in the frequency range between 30 and 60Hz.
The floating slab on the stiff soil shows a better performance, at the expense of an increased response near the
slab resonance frequency.

5. Conclusion

A numerical model for the prediction of railway induced vibrations has been applied to study the reduction
of the free field vibrations by means of a floating slab track. The focus is on the influence of the dynamic
track–soil interaction on the performance of the floating slab. Therefore, the reduction of the free field
vibrations is investigated for a floating slab on a relatively soft soil and a stiff soil.

The longitudinal invariance of the track–soil system allows an efficient solution procedure in the
frequency–wavenumber domain. The analysis of the track and free field response in the frequency–wave-
number domain shows how the response is not only amplified at the slab resonance frequency, as expected
from a two-dimensional analysis, but also along the dispersion curve of the track bending waves. In the case of
the soft soil, where the phase velocity of the bending waves in the track is higher than the Rayleigh wave
velocity in the soil, this modifies the radiation of waves by a dynamic point load on the track. The resulting
insertion loss for the free field response is relatively high for points on a line perpendicular to the track, but is
much less for other points in the free field. In the case of the stiff soil, where the phase velocity of the bending
waves in the track is lower, the radiation of waves remains relatively unaffected. The reduction of the free field
response is similar for all points in the free field.
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